2019 AP ${ }^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS

n	$f^{(n)}(0)$
2	3
3	$-\frac{23}{2}$
4	54

6. A function f has derivatives of all orders for all real numbers x. A portion of the graph of f is shown above, along with the line tangent to the graph of f at $x=0$. Selected derivatives of f at $x=0$ are given in the table above.
(a) Write the third-degree Taylor polynomial for f about $x=0$.
(b) Write the first three nonzero terms of the Maclaurin series for e^{x}. Write the second-degree Taylor polynomial for $e^{x} f(x)$ about $x=0$.
(c) Let h be the function defined by $h(x)=\int_{0}^{x} f(t) d t$. Use the Taylor polynomial found in part (a) to find an approximation for $h(1)$.
(d) It is known that the Maclaurin series for h converges to $h(x)$ for all real numbers x. It is also known that the individual terms of the series for $h(1)$ alternate in sign and decrease in absolute value to 0 . Use the alternating series error bound to show that the approximation found in part (c) differs from $h(1)$ by at most 0.45 .

STOP
 END OF EXAM

